Source code for liger_iris_pipeline.pipeline.image2

#!/usr/bin/env python
from collections import defaultdict
import os.path as op

from jwst import datamodels
from jwst.associations.load_as_asn import LoadAsLevel2Asn
from jwst.stpipe import Pipeline

# calwebb IMAGE2 step imports
from ..background import background_step
from ..dark_current import dark_current_step
from jwst.assign_wcs import assign_wcs_step
from ..flatfield import flat_field_step
from ..parse_subarray_map import parse_subarray_map_step
from jwst.photom import photom_step
from jwst.resample import resample_step


__all__ = ["ProcessImagerL2Pipeline"]


[docs] class ProcessImagerL2Pipeline(Pipeline): """ ProcessImagerL2Pipeline: Processes JWST imaging-mode slope data from Level-2a to Level-2b. Included steps are: background_subtraction, assign_wcs, flat_field, photom and resample. """ spec = """ save_bsub = boolean(default=False) # Save background-subracted science """ # Define alias to steps step_defs = { "bkg_subtract": background_step.BackgroundStep, "assign_wcs": assign_wcs_step.AssignWcsStep, "parse_subarray_map": parse_subarray_map_step.ParseSubarrayMapStep, "dark_current": dark_current_step.DarkCurrentStep, "flat_field": flat_field_step.FlatFieldStep, "photom": photom_step.PhotomStep, "resample": resample_step.ResampleStep, } # List of normal imaging exp_types image_exptypes = ["MIR_IMAGE", "NRC_IMAGE", "NIS_IMAGE"]
[docs] def process(self, asn_filename : str): self.log.info("Starting ProcessImagerL2Pipeline ...") # Retrieve the input(s) asn = LoadAsLevel2Asn.load(asn_filename, basename=self.output_file) # Each exposure is a product in the association. # Process each exposure. results = [] for product in asn["products"]: self.log.info("Processing product {}".format(product["name"])) if self.save_results: self.output_file = product["name"] try: getattr(asn, 'filename') except AttributeError: asn.filename = "singleton" result = self.process_exposure_product( product, asn["asn_pool"], op.basename(asn.filename) ) # Save result suffix = "cal" if isinstance(result, datamodels.CubeModel): suffix = "calints" result.meta.filename = self.make_output_path(suffix=suffix) results.append(result) self.log.info("... ending calwebb_image2") self.output_use_model = True self.suffix = False return results
# Process each exposure
[docs] def process_exposure_product(self, exp_product, pool_name=" ", asn_file=" "): """Process an exposure found in the association product Parameters ---------- exp_product: dict A Level2b association product. pool_name: str The pool file name. Used for recording purposes only. asn_file: str The name of the association file. Used for recording purposes only. """ # Find all the member types in the product members_by_type = defaultdict(list) for member in exp_product["members"]: members_by_type[member["exptype"].lower()].append(member["expname"]) # Get the science member. Technically there should only be # one. We'll just get the first one found. science = members_by_type["science"] if len(science) != 1: self.log.warning( f"Wrong number of science files found in {exp_product['name']}" ) self.log.warning("Using only first member.") science = science[0] self.log.info(f"Processing input {science} ...") if isinstance(science, datamodels.JwstDataModel): input_model = science else: input_model = datamodels.open(science) # Record ASN pool and table names in output input_model.meta.asn.pool_name = pool_name input_model.meta.asn.table_name = asn_file # Do background processing, if necessary if len(members_by_type["background"]) > 0: # Setup for saving if self.bkg_subtract.suffix is None: self.bkg_subtract.suffix = "bsub" if isinstance(input_model, datamodels.CubeModel): self.bkg_subtract.suffix = "bsubints" # Backwards compatibility if self.save_bsub: self.bkg_subtract.save_results = True # Call the background subtraction step input_model = self.bkg_subtract(input_model, members_by_type["background"]) # Parse the subarray map input_model = self.parse_subarray_map(input_model) # Dark current subtraction input_model = self.dark_current(input_model) # Flat division input_model = self.flat_field(input_model) # Assign WCS input_model = self.assign_wcs(input_model) # Flux calibration input_model = self.photom(input_model) # Resample individual exposures, but only if it's one of the regular science image types. # NOTE: cls.image_exptypes needs updated if input_model.meta.exposure.type.upper() in self.image_exptypes: self.resample(input_model) # That's all folks self.log.info("Finished processing product {}".format(exp_product["name"])) # Return the processed model return input_model