liger_iris_pipeline.utils.math
Functions
|
Optimized version of np.all which short circuits, unlike numpy.all. |
|
Optimized version of np.any which short circuits, unlike numpy.any. |
|
|
|
|
|
Calculate the median absolute deviation of an array. |
|
|
|
Calculate robust mean using outlier rejection. |
|
Calculate robust standard deviation using outlier rejection. |
|
Computes the weighted mean of a dataset. |
|
|
|
Calculate the weighted standard deviation of an array. |
- liger_iris_pipeline.utils.math.all_sc(arr: ndarray) bool [source]
Optimized version of np.all which short circuits, unlike numpy.all.
- liger_iris_pipeline.utils.math.any_sc(arr: ndarray) bool [source]
Optimized version of np.any which short circuits, unlike numpy.any.
- liger_iris_pipeline.utils.math.biweight_location(data: ndarray, c: float | None = 6.0, M: float | None = None) float [source]
- liger_iris_pipeline.utils.math.biweight_midvariance(data: ndarray, c: float = 9.0, M: float | None = None) float [source]
- liger_iris_pipeline.utils.math.mad(x: ndarray)[source]
Calculate the median absolute deviation of an array.
- Parameters:
x – Array of values.
w – Array of weights.
Returns: - Weighted standard deviation or NaN if no valid data
- liger_iris_pipeline.utils.math.median_absolute_deviation(data: ndarray, M: float | None = None)[source]
- liger_iris_pipeline.utils.math.robust_mean(x, w=None, n_sigma=4)[source]
Calculate robust mean using outlier rejection.
Parameters: - x: Array of values - w: Array of weights (default: uniform weights) - n_sigma: Number of sigma for outlier rejection
Returns: - Robust mean or NaN if insufficient valid data
- liger_iris_pipeline.utils.math.robust_stddev(x, w=None, n_sigma=4)[source]
Calculate robust standard deviation using outlier rejection.
Parameters: - x: Array of values - w: Array of weights (default: uniform weights) - n_sigma: Number of sigma for outlier rejection
Returns: - Robust standard deviation or NaN if insufficient valid data
- liger_iris_pipeline.utils.math.weighted_mean(x, w)[source]
Computes the weighted mean of a dataset.
- Parameters:
x (np.ndarray) – The input array.
w (np.ndarray) – The input weights, same shape as x.
axis (int) – Axis or tuple of axes along which to compute the mean. Default is None.
- Returns:
float – The weighted mean.
- liger_iris_pipeline.utils.math.weighted_quantile(values: ndarray, weights: ndarray, q: float = 0.5)[source]
- liger_iris_pipeline.utils.math.weighted_stddev(x: ndarray, w: ndarray, M: float | None = None)[source]
Calculate the weighted standard deviation of an array.
- Parameters:
x – Array of values.
w – Array of weights.
Returns: - Weighted standard deviation or NaN if no valid data