liger_iris_pipeline.utils.math
Functions
|
|
|
Calculate robust mean using outlier rejection. |
|
Calculate robust standard deviation using outlier rejection. |
|
Computes the weighted mean of a dataset. |
|
|
|
Calculate the weighted standard deviation of an array. |
- liger_iris_pipeline.utils.math.mad(x: ndarray)[source]
- liger_iris_pipeline.utils.math.robust_mean(x, w=None, n_sigma=4)[source]
Calculate robust mean using outlier rejection.
Parameters: - x: Array of values - w: Array of weights (default: uniform weights) - n_sigma: Number of sigma for outlier rejection
Returns: - Robust mean or NaN if insufficient valid data
- liger_iris_pipeline.utils.math.robust_stddev(x, w=None, n_sigma=4)[source]
Calculate robust standard deviation using outlier rejection.
Parameters: - x: Array of values - w: Array of weights (default: uniform weights) - n_sigma: Number of sigma for outlier rejection
Returns: - Robust standard deviation or NaN if insufficient valid data
- liger_iris_pipeline.utils.math.weighted_mean(x, w)[source]
Computes the weighted mean of a dataset.
- Args:
x (np.ndarray): The input array. w (np.ndarray): The input weights, same shape as x. axis (int): Axis or tuple of axes along which to compute the mean. Default is None.
- Returns:
float: The weighted mean.
- liger_iris_pipeline.utils.math.weighted_quantile(values: ndarray, weights: ndarray, q: float = 0.5)[source]
- liger_iris_pipeline.utils.math.weighted_stddev(x: ndarray, w: ndarray, mu: float | None = None)[source]
Calculate the weighted standard deviation of an array.
Parameters: - x: Array of values - w: Array of weights
Returns: - Weighted standard deviation or NaN if no valid data